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PRIMITIVE SOLUTIONS OF THE KORTEWEG–DE VRIES

EQUATION

S. A. Dyachenko,∗ P. Nabelek,† D. V. Zakharov,‡ and V. E. Zakharov§

We survey recent results connected with constructing a new family of solutions of the Korteweg–de Vries

equation, which we call primitive solutions. These solutions are constructed as limits of rapidly vanishing

solutions of the Korteweg–de Vries equation as the number of solitons tends to infinity. A primitive

solution is determined nonuniquely by a pair of positive functions on an interval on the imaginary axis and

a function on the real axis determining the reflection coefficient. We show that elliptic one-gap solutions

and, more generally, periodic finite-gap solutions are special cases of reflectionless primitive solutions.
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1. Introduction

The Korteweg–de Vries (KdV) equation

ut(x, t) = 6u(x, t)ux(x, t) − uxxx(x, t) (1)

plays a fundamental role in the modern theory of integrable systems and is the prototypical example of an

infinite-dimensional integrable system. The KdV equation is the first equation of an infinite sequence of

commuting equations called the KdV hierarchy. The auxiliary linear operator for the KdV hierarchy is the

one-dimensional Schrödinger operator on the real axis

− ψ′′ + u(x)ψ = Eψ, −∞ < x < ∞. (2)

∗Department of Mathematics, University of Washington, Seattle, Washington, USA,

e-mail: urrfinjuss@gmail.com.
†Department of Mathematics, Oregon State University, Corvallis, Oregon, USA, e-mail: patrik@alyrica.net.
‡Department of Mathematics, Central Michigan University, Mount Pleasant, Michigan, USA,

e-mail: dvzakharov@gmail.com.
§Department of Mathematics, University of Arizona, Tucson, Arizona, USA; Skolkovo Institute of Science and

Technology, Skolkovo, Moscow Oblast, Russia, e-mail: zakharov@math.arizona.edu.

The research of S. A. Dyachenko and D. V. Zakharov was supported by the National Science Foundation (Grant

No. DMS-1716822).
The research of V. E. Zakharov was supported by the National Science Foundation (Grant No. DMS-1715323).

The results in Secs. 3–5 were obtained with support of a grant from the Russian Science Foundation (Project

No. 19-72-30028).

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya

i Matematicheskaya Fizika, Vol. 202, No. 3, pp. 382–392, March, 2020. Received September 8, 2019. Revised

September 8, 2019. Accepted October 8, 2019.

334 0040-5779/20/2023-0334 c© 2020 Pleiades Publishing, Ltd.



There are two important cases where the initial value problem for the KdV equation admits an analytic

solution. If the initial condition u(x, 0) tends to zero sufficiently rapidly as x → ±∞, then the KdV equation

can be solved using the inverse spectral transform (IST). In this case, the Schrödinger operator has a finite

number of bound states and an absolutely continuous spectrum for positive energies. The corresponding

solution of the KdV equation is a nonlinear superposition of a finite number of solitons, corresponding to

the bound states, and a dissipating background. If the reflection coefficient is identically zero, then we

obtain a family of multisoliton solutions of the KdV equation, which are given by an explicit algebraic

formula.

We study the case of periodic initial data using algebro-geometric finite-gap solutions. Such a solution

is determined by a hyperelliptic algebraic curve with real branch points and a divisor on it and can be

explicitly given by the Matveev–Its formula in terms of the Riemann theta function of the spectral curve.

Periodic finite-gap solutions are dense in the space of all periodic solutions and can hence be effectively

approximated by them. It has long been assumed that periodic finite-gap solutions of the KdV equation

can be obtained from N -soliton solutions in the limit N → ∞, but a precise description of such a limit was

unknown.

In [1]–[7], we constructed a new family of bounded solutions of the KdV equation, which we call

primitive solutions, generalizing both rapidly vanishing and finite-gap periodic solutions. These solutions

are obtained as the limit of rapidly vanishing solutions with N bound states as N → ∞. A primitive

solution is obtained by solving a contour problem determined on the complex plane by a pair of positive

functions R1 and R2 on an interval on the imaginary axis and a function r on the real axis. The important

case r = 0 corresponds to reflectionless primitive solutions. In [1]–[3], we studied reflectionless primitive

solutions numerically and showed that they can exhibit quite complicated disordered behavior. In [5], [6], we

considered reflectionless solutions with R1 = R2 and gave an algorithm for determining the corresponding

solution u(x, t) as a convergent Taylor series. In addition, we showed that finite-gap periodic solutions are

primitive solutions.

2. Reformulation of IST as a ∂̄-problem

We begin by recalling how to solve KdV equation (1) in the rapidly decreasing case using the IST

(see [8]–[10]). We let u(x, t) be a solution of the KdV equation and assume that u(x, 0) tends to zero

sufficiently rapidly as x → ±∞. We regard u(x, t) as a time-dependent potential of a Schrödinger operator

L(t) given by (2). Classical spectral theory indicates that L(t) has an absolutely continuous spectrum [0,∞)

and finitely many simple eigenstates with eigenvalues −κ2
1, . . . ,−κ2

N . The spectral data for L(t) satisfy the

linear Gardner–Green–Kruskal–Miura (GGKM) equations, which can be explicitly solved, and the operator

L(t) can then be reconstructed from its spectral data.

Let ψ±(k, x, t) be the Jost solutions of the time-dependent Schrödinger equation:

L(t)ψ±(k, x, t) = k2ψ±(k, x, t).

The Jost solutions are analytic for Im k > 0, are continuous for Im k ≥ 0, and have the asymptotic behavior

as k → ∞ with Im k > 0

ψ±(k, x, t) = e±ikx

(
1 + Q±(x, t)

1

2ik
+ O

(
1

k2

))
,

where

Q+(x, t) = −
∫ ∞

x

u(y, t) dy, Q−(x, t) = −
∫ x

−∞

u(y, t) dy.
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The Jost solutions satisfy the scattering relations

t(k)ψ∓(k, x, t) = ψ±(k, x, t) + r±(k, t)ψ±(k, x, t), k ∈ R,

where t(k) and r±(k, t) are the respective transmission and reflection coefficients. The scattering data

for the Schrödinger operator L(t) consists of the reflection coefficient r(k, t) = r+(k, t), the eigenvalues

κ1, . . . , κN , and the phase coefficients γ1(t), . . . , γN (t) defined by

γn(t) = ‖ψ+(iκn, x, t)‖−1
2 , n = 1, . . . , N.

If u(x, t) satisfies KdV equation (1), then the κn are independent of t, while the time evolution of the

quantities r(k, t) and γn(t) is given by the GGKM equations:

r(k, t) = r(k)e8ik3t, r(k) = r(k, 0), γn(t) = γne4κ3

n
t, γn = γn(0). (3)

The constants κn and γn are positive, and the reflection coefficient r(k) has the properties

r(−k) = r(k), k ∈ R, |r(k)| < 1 if k �= 0, r(0) = −1 if |r(0)| = 1. (4)

To reconstruct u(x, t) from the spectral data, we consider the auxiliary function

χ(k, x, t) =

⎧
⎨
⎩

t(k)ψ−(k, x, t)eikx, Im k > 0,

ψ+(−k, x, t)eikx, Im k < 0.
(5)

The function χ(k, x, t) has the following properties:

1. It is meromorphic on the complex-k plane away from the real axis and has the nontangential limits

χ±(k, x, t) = lim
ε→0

χ(k ± iε, x, t), k ∈ R, (6)

on the real axis.

2. It has a jump on the real axis satisfying

χ+(k, x, t) − χ−(k, x, t) = r(k)e2ikx+8ik3 tχ−(−k, x, t), k ∈ R. (7)

3. It has simple poles at the points iκ1, . . . , iκN and no other singularities. The residues at the poles

satisfy the condition

Res
iκn

χ(k, x, t) = icne−2κnx+8κ3

n
tχ(−iκn, x, t), cn = γ2

n. (8)

4. It has the asymptotic behavior

χ(k, x, t) = 1 +
i

2k
Q+(x, t) + O

(
1

k2

)
, |k| → ∞, Im k �= 0. (9)

The solution u(x, t) of the KdV equation is given in terms of χ by the formula

u(x, t) =
d

dx
Q+(x, t). (10)

An important class of solutions of the KdV equation, called multisoliton solutions, is obtained by

choosing spectral data with r(k) = 0. In this case, the solution is given by the explicit formula

u(x, t) = −2
d2

dx2

∑

I⊂{1,...,N}

[ ∏

{i,j}⊂I,
i<j

(κi − κj)
2

(κi + κj)2

∏

i∈I

ci

2κi

e−2κix

]
. (11)
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3. Transplantation of poles and primitive solutions

Our initial papers [1]–[3] were motivated by the question of how we can pass to the limit N → ∞ in

formula (11). The resulting solutions of the KdV equation (and, more generally, the limits of generic rapidly

decreasing solutions) are called primitive solutions, and they are constructed by the following three steps.

First, following Manakov and Zakharov (see [11]), we reformulate boundary conditions (6)–(9) defining χ

as a ∂̄-problem. Second, we generalize this problem by allowing χ to have poles on the negative in addition

to the positive imaginary axis. Finally, we pass to the limit as N → ∞, and the poles of χ hence coalesce

into jumps along two cuts on the imaginary axis.

Let (r(k), κn, γn) be the scattering data for a Schrödinger operator and cn = γ2
n. We consider the

distribution on the k plane, called the dressing function,

T (k) =
i

2
δ(kI)θ(−kI)r(kR) + πδ(kR)

N∑

n=1

cnδ(kI − κn). (12)

Here, δ is the Dirac delta function, k = kR +ikI, θ is the Heaviside step function, and we use the conventions

∂

∂k̄

1

k
= πδ(k) = πδ(kR)δ(kI),

∫ ∞

−∞

f(x)δ(x)θ(±x) dx = lim
x→0±

f(x).

A direct calculation shows that conditions (7) and (8) are equivalent to the ∂̄-problem for the function χ

(see [11])

∂χ

∂k̄
= T (k)e2ikx+8ik3tχ(−k, x, t), χ → 1 as k → ∞. (13)

The function χ solving this problem has a jump on the real axis determined by the reflection coefficient

and has simple poles at the points k = iκn on the positive imaginary axis. The reason for this lack of

symmetry is that the IST is not symmetric under the spatial involution x �→ −x. We seek to pass to the

limit as N → ∞ and, in particular, to obtain finite-gap solutions as limits of multisoliton solutions. Because

finite-gap solutions are periodic or quasiperiodic in x, we must first restore spatial symmetry, which we do

by allowing χ to have poles on the negative in addition to the positive imaginary axis. This procedure was

performed in [1]–[3] for reflectionless potentials (in the case r(k) = 0) and for arbitrary rapidly decreasing

potentials in [7].

Let (r(k), κ1, . . . , κN , c1, . . . , cN) be the scattering data of a potential u(x, t) rapidly decreasing at

infinity and χ(k, x, t) be the function determined by ∂̄-problem (13). We fix a subset I ⊂ {1, . . . , N}, and

introduce the function

χ̃(k, x, t) = χ(k, x, t)
∏

m∈I

k − iκm

k + iκm

. (14)

It has a jump on the real axis, tends to unity as k → ∞, and has poles at k = iκm for m /∈ I and at

k = −iκm for m ∈ I. These singularities can be encoded by requiring that χ̃ solve the same ∂̄-problem (13)

as χ but with the dressing function

T̃ (k) =
i

2
δ(kI)θ(−kI)r̃(kR) + πδ(kR)

N∑

n=1

c̃nδ(kI − κ̃n), (15)
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whose coefficients are equal to

r̃(k) = r(k)
∏

m∈I

(
k − iκm

k + iκm

)
2

, κ̃n =

⎧
⎪⎨
⎪⎩

κn, n /∈ I,

−κn, n ∈ I,

(16)

c̃n =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cn

∏
m∈I

(
κn − κm

κn + κm

)
2

, n /∈ I,

−4κ2
n

cn

∏
m∈I\{n}

(
κn + κm

κn − κm

)
2

, n ∈ I.

(17)

We note that

r̃(−k) = r̃(k), |r̃(k)| = |r(k)| for k ∈ R, r̃(0) = r(0),

and the function r̃ hence has the same properties (4) as r. We also note that c̃n is positive if n /∈ I and

negative if n ∈ I, i.e., each coefficient c̃n has the same sign as κ̃n.

The function χ̃ has the asymptotic behavior as |k| → ∞

χ̃(k, x, t) = 1 +
i

2k
Q̃+(x, t) + O

(
1

k2

)
, Q̃+(x, t) = Q+(x, t) − 4

∑

m∈I

κm.

Therefore, u(x, t) is obtained from χ̃(k, x, t) using the same formula (10).

We can conclude as follows. Let u(x, t) be a rapidly vanishing solution of the KdV equation, T (k) be

distribution (12), and χ be the solution of ∂̄-problem (13). If we choose any subset I ⊂ {1, . . . , N} and

replace the distribution T (k) with T̃ (k) according to (15), then formula (10) with χ̃ in place of χ gives the

same solution u(x, t) of the KdV equation. Hence, any rapidly vanishing solution of the KdV equation with

N solitons can be obtained using the dressing method in 2N different ways.

We now construct primitive potentials by passing to the limit as N → ∞ in the distribution T̃ (see [7]).

We consider two positive, Hölder-continuous functions R1 and R2 on the interval [k1, k2] and a function r

on the real axis satisfying (4). We consider the dressing function

T (k) =
i

2
δ(kI)θ(−kI)r(k) + πδ(kR)

[ ∫ k2

k1

R1(p)δ(kI − p) dp −
∫ k2

k1

R2(p)δ(kI + p) dp

]
. (18)

It is clear that by approximating the second and third integrals with a finite Riemann sum, we obtain a

distribution of form (15), which, as seen above, describes a solution of the KdV equation rapidly decreasing

at infinity.

Let χ be the solution of ∂̄-problem (13) with dressing function (18). The function χ has a jump on

the real axis and also on the intervals [ik1, ik2] and [−ik2,−ik1] on the imaginary axis and has the spectral

representation

χ(k, x, t) = 1 +
1

2πi

∫ ∞

−∞

ρ(p, x, t) dp

p − k
+

i

π

∫ k2

k1

f(p, x, t) dp

k − ip
+

i

π

∫ k2

k1

g(p, x, t) dp

k + ip
. (19)
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Substituting this representation in (13), we obtain the system of singular integral equations for ρ, f , and g

ρ(k, x, t) = r(k, x, t)e−2ikx−8ik3 t ×

×
[
1 +

1

2πi

∫ ∞

−∞

ρ(p, x, t) dp

q + ik − ε
− i

π

∫ k2

k1

f(p, x, t) dp

k + ip
+

i

π

∫ k2

k1

g(p, x, t) dp

−k + ip

]
, k ∈ R,

f(k, x, t) +
R1(k)

π
e−2kx+8k3t

[ ∫ k2

k1

f(p, x, t) dp

k + p
+

k2�

k1

g(p, x, t) dp

k − p

]
=

= R1(k)e−2kx+8k3t

[
1 +

1

2πi

∫ ∞

−∞

ρ(p, x, t) dp

p − ik

]
, k ∈ [k1, k2],

g(k, x, t) +
R2(k)

π
e2kx−8k3t

[ k2�

k1

f(p, x, t) dp

k − p
+

∫ k2

k1

g(p, x, t) dp

k + p

]
=

= −R2(k)e2kx−8k3t

[
1 +

1

2πi

∫ ∞

−∞

ρ(p, x, t) dp

p + ik

]
, k ∈ [k1, k2].

(20)

The corresponding solution u(x, t) of KdV equation (1), which we call a primitive solution, is given by the

formula

u(x, t) = 2
d

dx

[
− 1

2π

∫ ∞

−∞

ρ(p, x, t) dp +
1

π

∫ k2

k1

[f(p, x, t) + g(p, x, t)] dp

]
. (21)

For fixed instants of time, we obtain primitive potentials of Schrödinger operator (2).

We note that ∂̄-problem (13), (18) defining a primitive solution has a certain gauge equivalence in the

sense that a single primitive solution u(x, t) of the KdV equation can be obtained from a family of different

dressings (18). This is a consequence of our previous observation that a rapidly vanishing solution of the

KdV equation with N bound states can be defined using 2N different dressings of form (15).

If we set the reflection coefficient r(k) to zero, then we obtain ρ(k, x, t) = 0, and the resulting system

of equations (here k ∈ [k1, k2])

f(k, x, t) +
R1(k)

π
e−2kx+8k3t

[ ∫ k2

k1

f(p, x, t) dp

k + p
+

k2�

k1

g(p, x, t) dp

k − p

]
= R1(k)e−2kx+8k3t,

g(k, x, t) +
R2(k)

π
e2kx−8k3t

[ k2�

k1

f(p, x, t)

k − p
dp +

∫ k2

k1

g(p, x, t) dp

k + p

]
= −R2(k)e2kx−8k3t

(22)

describes reflectionless primitive potentials that we previously derived in [1]–[3]. The corresponding solution

of the KdV equation is

u(x, t) =
2

π

d

dx

∫ k2

k1

[
f(p, x, t) + g(p, x, t)

]
dp. (23)

We do not know an analytic method for solving equations (20) in the general case. In [1]–[3], we studied these

equations numerically (with r(k) = 0). Discretizing the integrals using Riemann sums, we obtain a linear

system that coincides with the system for multisoliton solutions of the KdV equation. In other words,

rapidly vanishing solutions can approximate primitive solutions of the KdV equation, and multisoliton

solutions can approximate reflectionless primitive solutions. Simulations with constant R1 and R2 show

that a relatively ordered solution at t = 0 quickly becomes disordered under the KdV flow.
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Fig. 1. A space–time plot of the primitive potential u(x, t) determined by k1 = 1/4, k2 = 1, R1 = 102,

and R2 = 104.

Fig. 2. Spatial plots of the primitive potential u(x, t) shown in Fig. 1 at the instants t = −10, t = 0,

and t = 10.

We show an example of a primitive potential with constant R1 and R2 in Figs. 1 and 2. Unfortunately,

the condition number of the discretized system is exponential in x and requires the use of multiprecision

arithmetic.

We can also consider solutions of the KdV equation obtained from (22) with R2 = 0 (equivalently,

with R1 = 0). Such solutions were rigorously studied in [12]. These solutions are rapidly decreasing in one

direction and tend to an elliptic one-gap potential in the other direction.
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4. Algebro-geometric potentials as reflectionless primitive

potentials

We now return to the question of constructing algebro-geometric finite-gap solutions of the KdV equa-

tion as limits of multisoliton solutions. In the simplest case, we want to construct the elliptic one-gap

potential

u(x) = 2℘(x + iω′ − x0) + e3 (24)

with the spectrum [−k2
2 ,−k2

1] ∪ [0,∞), where

k2
1 = e2 − e3, k2

2 = e1 − e3, e1 + e2 + e3 = 0. (25)

In [2] (see Sec. 5), we showed that potential (24) is the reflectionless primitive potential corresponding to

the dressing functions

R1(k) =

√
(k2 − k)(k + k1)

(k − k1)(k + k2)
, R2(k) =

1

R1(k)
. (26)

At the same time, numerical experiments showed that the elliptic potential can also be constructed using

the dressing functions R1 = R2 = 1. There is no contradiction here: as we noted above, a primitive

potential can be given by a whole family of dressings of form (18). It is a curious fact that if we choose R1

and R2 to be distinct constants, then we (numerically) obtain solutions that do not appear to be finite-gap.

Finally, it was shown in [6] that any algebro-geometric finite-gap solution of the KdV equation including

elliptic solutions is a reflectionless primitive solution. We formulate that theorem.

Theorem 1. Let 0 < k1 < k2, let κ1, . . . , κ2g be an increasing sequence with

0 < k1 < κ1 < · · · < κ2g < k2, (27)

and let u(x, t) be a g-gap solution of the KdV equation with the spectrum

[−κ2
2g,−κ2

2g−1] ∪ · · · ∪ [−κ2
2,−κ2

1] ∪ [0,∞). (28)

Then there exist real constants a1, . . . , ag such that u(x, t) is the reflectionless primitive solution of the KdV

equation determined by the dressing functions

R1(k) = exp

( g∑

j=1

ajk
2j−1

) g∑

l=1

11[κ2l−1,κl](k),

R2(k) =
1

R1(k)
= exp

(
−

g∑

j=1

ajk
2j−1

) g∑

l=1

11[κ2l−1,κl](k),

(29)

where 11[κ2l−1,κl] is the indicator function of [κ2l−1, κl]. Conversely, any primitive solution u(x, t) determined

by dressing functions of form (29) is an algebro-geometric finite-gap solution with spectrum (28).

Because periodic finite-gap solutions of the KdV equation are dense in the space of all periodic solutions,

it follows that the set of multisoliton solutions of KdV is dense in the space of periodic solutions of the

KdV equation. Describing all pairs of dressing functions R1 and R2 such that the corresponding primitive

solutions are algebro-geometric and determining what relation, if any, there is between generic primitive

solutions and algebraic geometry remain open problems.
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5. The symmetric case

In [5], we considered reflectionless primitive potentials determined by Eqs. (22) under the further

assumption that R1(k) = R2(k) for all k ∈ [k1, k2]. In this case, the jump coefficients f and g satisfy

g(p, x, t) = −f(p,−x,−t),

and the corresponding solution u(x, t) of the KdV equation is symmetric in the sense that

u(−x,−t) = u(x, t).

The resulting integral equation for f can be solved recursively as a power series in s = p2. For simplicity,

we only give the equations for the coefficients of f(p, x) = f(p, x, 0):

f(p, x) =

∞∑

k=0

1

(2k)!
x2kfk(s) +

∞∑

k=0

1

(2k + 1)!
x2k+1√s hk(s), s = p2. (30)

We substitute this series in integral equations (22) and set t = 0. Collecting powers of x, we obtain the

system of equations for fk(s) and hk(s), where k is a nonnegative integer and δ0k is the Kronecker delta,

(
1 + R(

√
s )H

)
fk(s) = R(

√
s )δ0k −

k−1∑

i=0

(
2k

2i

)
22k−2isk−ifi(s) −

k−1∑

j=0

(
2k

2j + 1

)
22k−2j−1sk−jhj(s),

(
1 − R(

√
s )H

)
hk(s) = −

k∑

i=0

(
2k + 1

2i

)
22k−2i+1sk−ifi(s) −

k−1∑

j=0

(
2k + 1

2j + 1

)
22k−2jsk−jhj(s).

(31)

Here, H is the Hilbert transform on the interval [k2
1 , k

2
2 ],

H [ψ(s)] =
1

π

k2

2�

k2

1

ψ(s′)

s′ − s
ds′. (32)

To solve Eqs. (31), we must invert the integral operators 1 ± R(
√

s )H in the left-hand side. A calculation

shows that the integral operator

Lα[ψ(s)] = ψ(s) + tan(πα(s))H [ψ(s)],

where α(s) is a Hölder-continuous function on the interval [k2
1 , k

2
2 ] such that |α(s)| < 1/2 for all s, has a

unique bounded inverse on Lp(R) for p > 1 and p �= 2 given by

L−1
α [ϕ(s)] = cos2(πα(s))ϕ(s) − sin(πα(s))e−πH[α(s)]H [cos(πα(s))eπH[α(s)]ϕ(s)].

Using this formula, we can recursively solve system (31). The corresponding primitive potential is given by

the formula

u(x) =
2

π

∞∑

k=0

x2k

(2k)!

∫ k2

2

k2

1

hk(s′) ds′. (33)

It is easy to verify that this power series converges for all values of x.
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